16.1 Regulation of Gene Expression By the end of this section, you will be able to do the following: - Discuss why every cell does not express all of its genes all of the time - Describe how prokaryotic gene regulation occurs at the transcriptional level - Discuss how eukaryotic gene regulation occurs at the epigenetic, transcriptional, posttranscriptional, translational, and post-translational levels For a cell to function properly, necessary proteins must be synthesized at the proper time and place. All cells control or regulate the synthesis of proteins from information encoded in their DNA. The process of turning on a gene to produce RNA and protein is called **gene expression**. Whether in a simple unicellular organism or a complex multi-cellular organism, each cell controls when and how its genes are expressed. For this to occur, there must be internal chemical mechanisms that control when a gene is expressed to make RNA and protein, how much of the protein is made, and when it is time to stop making that protein because it is no longer needed. The regulation of gene expression conserves energy and space. It would require a significant amount of energy for an organism to express every gene at all times, so it is more energy efficient to turn on the genes only when they are required. In addition, only expressing a subset of genes in each cell saves space because DNA must be unwound from its tightly coiled structure to transcribe and translate the DNA. Cells would have to be enormous if every protein were expressed in every cell all the time. The control of gene expression is extremely complex. Malfunctions in this process are detrimental to the cell and can lead to the development of many diseases, including cancer. ## **Prokaryotic versus Eukaryotic Gene Expression** To understand how gene expression is regulated, we must first understand how a gene codes for a functional protein in a cell. The process occurs in both prokaryotic and eukaryotic cells, just in slightly different manners. Prokaryotic organisms are single-celled organisms that lack a cell nucleus, and their DNA therefore floats freely in the cell cytoplasm. To synthesize a protein, the processes of transcription and translation occur almost simultaneously. When the resulting protein is no longer needed, transcription stops. As a result, the primary method to control what type of protein and how much of each protein is expressed in a prokaryotic cell is the regulation of DNA transcription. All of the subsequent steps occur automatically. When more protein is required, more transcription occurs. Therefore, in prokaryotic cells, the control of gene expression is mostly at the transcriptional level. Eukaryotic cells, in contrast, have intracellular organelles that add to their complexity. In eukaryotic cells, the DNA is contained inside the cell's nucleus and there it is transcribed into RNA. The newly synthesized RNA is then transported out of the nucleus into the cytoplasm, where ribosomes translate the RNA into protein. The processes of transcription and translation are *physically separated* by the nuclear membrane; transcription occurs only within the nucleus, and translation occurs only outside the nucleus in the cytoplasm. The regulation of gene expression can occur at all stages of the process (Figure 16.2). Regulation may occur when the DNA is uncoiled and loosened from nucleosomes to bind transcription factors (epigenetic level), when the RNA is transcribed (transcriptional level), when the RNA is processed and exported to the cytoplasm after it is transcribed (post-transcriptional level), when the RNA is translated into protein (translational level), or after the protein has been made (post-translational level). Figure 16.2 Regulation in prokaryotes and eukaryotes. Prokaryotic transcription and translation occur simultaneously in the cytoplasm, and regulation occurs at the transcriptional level. Eukaryotic gene expression is regulated during transcription and RNA processing, which take place in the nucleus, and during protein translation, which takes place in the cytoplasm. Further regulation may occur through post-translational modifications of proteins. The differences in the regulation of gene expression between prokaryotes and eukaryotes are summarized in <u>Table 16.1</u>. The regulation of gene expression is discussed in detail in subsequent modules. #### Differences in the Regulation of Gene Expression of Prokaryotic and Eukaryotic Organisms | Prokaryotic organisms | Eukaryotic organisms | |---|---| | Lack a membrane-bound nucleus | Contain nucleus | | DNA is found in the cytoplasm | DNA is confined to the nuclear compartment | | RNA transcription and protein formation occur almost simultaneously | RNA transcription occurs prior to protein formation, and it takes place in the nucleus. Translation of RNA to protein occurs in the cytoplasm. | | Gene expression is regulated primarily at the transcriptional level | Gene expression is regulated at many levels (epigenetic, transcriptional, nuclear shuttling, post-transcriptional, translational, and post-translational) | #### **Table 16.1** #### **EVOLUTION CONNECTION** #### **Evolution of Gene Regulation** Prokaryotic cells can only regulate gene expression by controlling the amount of transcription. As eukaryotic cells evolved, the complexity of the control of gene expression increased. For example, with the evolution of eukaryotic cells came compartmentalization of important cellular components and cellular processes. A nuclear region that contains the DNA was formed. Transcription and translation were physically separated into two different cellular compartments. It therefore became possible to control gene expression by regulating transcription in the nucleus, and also by controlling the RNA levels and protein translation present outside the nucleus. Most gene regulation is done to conserve cell resources. However, other regulatory processes may be defensive. Cellular processes such as developed to protect the cell from viral or parasitic infections. If the cell could quickly shut off gene expression for a short period of time, it would be able to survive an infection when other organisms could not. Therefore, the organism evolved a new process that helped it survive, and it was able to pass this new development to offspring. ## 16.2 Prokaryotic Gene Regulation By the end of this section, you will be able to do the following: - Describe the steps involved in prokaryotic gene regulation - Explain the roles of activators, inducers, and repressors in gene regulation The DNA of prokaryotes is organized into a circular chromosome, supercoiled within the nucleoid region of the cell cytoplasm. Proteins that are needed for a specific function, or that are involved in the same biochemical pathway, are encoded together in blocks called **operons**. For example, all of the genes needed to use lactose as an energy source are coded next to each other in the lactose (or *lac*) operon, and transcribed into a single mRNA. In prokaryotic cells, there are three types of regulatory molecules that can affect the expression of operons: repressors, activators, and inducers. Repressors and activators are proteins produced in the cell. Both repressors and activators regulate gene expression by binding to specific DNA sites *adjacent* to the genes they control. *In general, activators bind to the promoter site, while repressors bind to operator regions.* **Repressors** prevent transcription of a gene in response to an external stimulus, whereas **activators** increase the transcription of a gene in response to an external stimulus. Inducers are small molecules that may be produced by the cell or that are in the cell's environment. Inducers either activate or repress transcription depending on the needs of the cell and the availability of substrate. ### The trp Operon: A Repressible Operon Bacteria such as *Escherichia coli* need amino acids to survive, and are able to synthesize many of them. **Tryptophan** is one such amino acid that *E. coli* can either ingest from the environment or synthesize using enzymes that are encoded by five genes. These five genes are next to each other in what is called the **tryptophan** (*trp*) **operon** (Figure 16.3). The genes are transcribed into a single mRNA, which is then translated to produce all five enzymes. If tryptophan is present in the environment, then *E. coli* does not need to synthesize it and the *trp* operon is switched off. However, when tryptophan availability is low, the switch controlling the operon is turned on, the mRNA is transcribed, the enzyme proteins are translated, and tryptophan is synthesized. Figure 16.3 The tryptophan operon. The five genes that are needed to synthesize tryptophan in *E. coli* are located next to each other in the *trp* operon. When tryptophan is plentiful, two tryptophan molecules bind the repressor protein at the operator sequence. This physically blocks the RNA polymerase from transcribing the tryptophan genes. When tryptophan is absent, the repressor protein does not bind to the operator and the genes are transcribed. The *trp* operon includes three important regions: the coding region, the *trp* operator and the *trp* promoter. The coding region